276 research outputs found

    Applications of system identification methods to the prediction of helicopter stability, control and handling characteristics

    Get PDF
    A set of results on rotorcraft system identification is described. Flight measurements collected on an experimental Puma helicopter are reviewed and some notable characteristics highlighted. Following a brief review of previous work in rotorcraft system identification, the results of state estimation and model structure estimation processes applied to the Puma data are presented. The results, which were obtained using NASA developed software, are compared with theoretical predictions of roll, yaw and pitching moment derivatives for a 6 degree of freedom model structure. Anomalies are reported. The theoretical methods used are described. A framework for reduced order modelling is outlined

    Modification of a helicopter inverse simulation to include an enhanced rotor model

    Get PDF

    The potential impact of adverse aircraft-pilot couplings on the safety of tilt-rotor operations

    Get PDF
    This paper addresses the potential impact of adverse aircraft-pilot couplings on tiltrotor safety, when a pilot or autopilot attempts to constrain flight dynamics with strong control. The work builds on previously published research on the theory and application of constrained flight to fixed- and rotary-wing aircraft. Tiltrotor aircraft feature characteristics from both types of aircraft and how these determine behaviour in a unique manner is investigated using a FLIGHTLAB simulation model of the XV-15 aircraft. Two different scenarios are explored in detail, using linearised models that reflect the flight-physics of stability for small deviations from trim. First, the control of vertical flight path with longitudinal cyclic pitch and elevator, and the consequences for the stability of the aircraft surge mode and short-period pitch-heave mode. The classical surge-mode instability for flight at speeds below minimum power is shown to apply to the tiltrotor in helicopter mode but alleviated in conversion and airplane modes. The impact on the short–period mode is seen to be a trade-off between the stabilising pitch attitude and destabilising incidence (angle-of-attack) contributions to the flight-path angle. The second example concerns strong control of roll attitude in the presence of adverse aileron-yaw. Here, the yaw-sway motion can be driven unstable, a problem encountered on fixed-wing aircraft with weak weathercock stability, but rare in the rotorcraft world. For both examples, the loss of stability is expressed as the change in sign of effective damping or stiffness stability derivatives. The explanatory theory for these non-oscillatory or low-frequency aircraft-pilot couplings is presented, along with interpretations in terms of handling qualities criteria. The paper also addresses the question of how to translate the findings into a form of aeronautical knowledge useful for the pilot training community.European Union fundin

    Linking phytoplankton community metabolism to the individual size distribution

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this recordQuantifying variation in ecosystem metabolism is critical to predicting the impacts of environmental change on the carbon cycle. We used a metabolic scaling framework to investigate how body size and temperature influence phytoplankton community metabolism. We tested this framework using phytoplankton sampled from an outdoor mesocosm experiment, where communities had been either experimentally warmed (+ 4 °C) for 10 years or left at ambient temperature. Warmed and ambient phytoplankton communities differed substantially in their taxonomic composition and size structure. Despite this, the response of primary production and community respiration to long- and short-term warming could be estimated using a model that accounted for the size- and temperature dependence of individual metabolism, and the community abundance-body size distribution. This work demonstrates that the key metabolic fluxes that determine the carbon balance of planktonic ecosystems can be approximated using metabolic scaling theory, with knowledge of the individual size distribution and environmental temperature.NERC. Grant Number: PASW06

    Prediction and Simulator Verification of Roll/Lateral Adverse Aeroservoelastic Rotorcraft–Pilot Couplings

    Get PDF
    The involuntary interaction of a pilot with an aircraft can be described as pilot-assisted oscillations. Such phenomena are usually only addressed late in the design process when they manifest themselves during ground/flight testing. Methods to be able to predict such phenomena as early as possible are therefore useful. This work describes a technique to predict the adverse aeroservoelastic rotorcraft–pilot couplings, specifically between a rotorcraft’s roll motion and the resultant involuntary pilot lateral cyclic motion. By coupling linear vehicle aeroservoelastic models and experimentally identified pilot biodynamic models, pilot-assisted oscillations and no-pilot-assisted oscillation conditions have been numerically predicted for a soft-in-plane hingeless helicopter with a lightly damped regressive lead–lag mode that strongly interacts with the roll modeat a frequency within the biodynamic band of the pilots. These predictions have then been verified using real-time flight-simulation experiments. The absence of any similar adverse couplings experienced while using only rigid-body models in the flight simulator verified that the observed phenomena were indeed aeroelastic in nature. The excellent agreement between the numerical predictions and the observed experimental results indicates that the techniques developed in this paper can be used to highlight the proneness of new or existing designs to pilot-assisted oscillation

    Role of carbon allocation efficiency in the temperature dependence of autotroph growth rate

    Get PDF
    To predict how plant growth rate will respond to temperature requires understanding how temperature drives the underlying metabolic rates. Although past studies have considered the temperature dependences of photosynthesis and respiration rates underlying growth, they have largely overlooked the temperature dependence of carbon allocation efficiency. By combining a mathematical model that links exponential growth rate of a population of photosynthetic cells to photosynthesis, respiration, and carbon allocation; to an experiment on a freshwater alga; and to a database covering a wide range of taxa, we show that allocation efficiency is crucial for predicting how growth rates will respond to temperature change across aquatic and terrestrial autotrophs, at both short and long (evolutionary) timescales

    Temperature-driven selection on metabolic traits increases the strength of an algal-grazer interaction in naturally warmed streams

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Trophic interactions are important determinants of the structure and functioning of ecosystems. As the metabolism and consumption rates of ectotherms increase sharply with temperature, there are major concerns that global warming will increase the strength of trophic interactions, destabilizing food webs, and altering ecosystem structure and function. We used geothermally warmed streams that span an 11°C temperature gradient to investigate the interplay between temperature-driven selection on traits related to metabolism and resource acquisition, and the interaction strength between the keystone gastropod grazer, Radix balthica, and a common algal resource. Populations from a warm stream (~28°C) had higher maximal metabolic rates and optimal temperatures than their counterparts from a cold stream (~17°C). We found that metabolic rates of the population originating from the warmer stream were higher across all measurement temperatures. A reciprocal transplant experiment demonstrated that the interaction strengths between the grazer and its algal resource were highest for both populations when transplanted into the warm stream. In line with the thermal dependence of respiration, interaction strengths involving grazers from the warm stream were always higher than those with grazers from the cold stream. These results imply that increases in metabolism and resource consumption mediated by the direct, thermodynamic effects of higher temperatures on physiological rates are not mitigated by metabolic compensation in the long-term, and suggest that warming will increase the strength of algal-grazer interactions with likely knock-on effects for the biodiversity and productivity of aquatic ecosystems. This article is protected by copyright. All rights reserved.Leverhulme Trust Research , Grant/AwardNumber: RP G-2013-335; ERC-StG, Grant/Award Number : ERC-StG 67727

    Warming impairs trophic transfer efficiency in a long-term field experiment

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordIn natural ecosystems, the efficiency of energy transfer from resources to consumers determines the biomass structure of food webs. As a general rule, about 10% of the energy produced in one trophic level makes it up to the next1–3. Recent theory suggests this energy transfer could be further constrained if rising temperatures increase metabolic growth costs4, although experimental confirmation in whole ecosystems is lacking. We quantified nitrogen transfer efficiency (a proxy for overall energy transfer) in freshwater plankton in artificial ponds exposed to 7 years of experimental warming. We provide the first direct experimental evidence that, relative to ambient conditions, 4 °C of warming can decrease trophic transfer efficiency by up to 56%. In addition, both phytoplankton and zooplankton biomass were lower in the warmed ponds, indicating major shifts in energy uptake, transformation and transfer5,6. These new findings reconcile observed warming-driven changes in individual-level growth costs and carbon-use efficiency across diverse taxa4,7–10 with increases in the ratio of total respiration to gross primary production at the ecosystem level11–13. Our results imply that an increasing proportion of the carbon fixed by photosynthesis will be lost to the atmosphere as the planet warms, impairing energy flux through food chains, with negative implications for larger consumers and the functioning of entire ecosystems.AXA Research FundNatural Environment Research Council (NERC)European Research Council (ERC
    • …
    corecore